Bilans énergétiques








télécharger 24.51 Kb.
titreBilans énergétiques
date de publication01.04.2017
taille24.51 Kb.
typeDocumentos
p.21-bal.com > loi > Documentos

Bilans énergétiques




Transformation d’un système obéissant à l’une des lois de Joule

Système satisfaisant la 1ère loi de Joule
En particulier, le gaz parfait vérifie la 1ère loi de Joule.

Soit une transformation quasi-statique d’un état initial 1 vers un état final 2.



Pour une étape infinitésimale de la transformation :



Pour une transformation quelconque, on a aussi (il suffit de prendre une transformation quasi-statique qui a même état initial et même état final).
Système satisfaisant la 2nde loi de Joule
Le gaz parfait vérifie aussi la 2nde loi de Joule.

Soit une transformation quasi-statique d’un état initial 1 vers un état final 2.



Pour une étape infinitésimale de la transformation :



Pour une transformation quelconque, on a aussi

Transformation réversible d’un gaz parfait

Transformation isotherme réversible
On considère n moles d’un gaz parfait



Pour que la transformation soit isotherme et réversible, elle doit être très lente.

Pour une transformation infinitésimale : (réversibilité). Puisque la transformation est quasi-statique, on a, pendant toute la transformation, .

Donc

avec , rapport volumétrique de la transformation



D’après le premier principe, . Donc .

Pour une compression, .



Pour une détente, .


Transformation adiabatique réversible
On considère n moles d’un gaz parfait



Pour que la transformation soit adiabatique et réversible, il faut qu’elle soit assez lente (réversibilité), mais suffisamment rapide pour être adiabatique.

Loi de Laplace
Pour une étape infinitésimale de la transformation, (1ère loi de Joule et quasi-staticité). On a :

, et, d’après le premier principe,

Donc .

D’après l’équation d’état du gaz parfait :



Donc

(Formulation différentielle de la loi de Laplace)

Si est constante sur l’intervalle, on peut intégrer la loi de Laplace :



(loi de Laplace)

ouou (à partir de l’équation d’état du gaz parfait)

travail reçu
. Donc

si est constante,

Pour une compression,

Pour une détente,

Cycle de Carnot du gaz parfait


On pose




Transformation

W

Q



()





0





0



()





0





0



(moteur)





0

On définit le rendement

Détente de Joule Gay-Lussac

Présentation

Bilan énergétique
Système

Détente adiabatique, et . On a donc :



On dit que la détente est isoU (à U constante)

Application aux gaz parfaits et réels
Gaz parfait : U ne dépend que de T (1ère loi de Joule). ( U(T) est injective car strictement croissante : plus T augmente, plus l’énergie interne augmente). La transformation est donc monotherme.

Gaz réel : U dépend de V, T (il ne satisfait plus la première loi de Joule)

Pour un gaz de Van der Waals . Pour une mole de gaz réel diatomique :

Détente de à  :

. Pour a = 0,138 Pa.m6.mol-1, .

Détente de Joule Thomson (ou Joule Kelvin)

Formulation du 1er principe pour un écoulement stationnaire


On suppose et indépendants du temps

En amont : pression , température

En aval : pression , température

(Uniformes et stationnaires)
d : débit massique : masse qui traverse une surface donnée pendant dt

Dm : débit molaire



Système étudié entre A et B à t qui se déplace entre A’ et B’ à

1er principe appliqué au système :



Comme l’écoulement est stationnaire, Donc

( et P est constante)



Masse de AA’ (car )

De même, masse de BB’

On note h l’enthalpie massique (h est constante au cours du temps, et même partout en aval ou en amont car les paramètres d’état sont uniformes dans ces deux zones). . Donc ou , où Hm est l’enthalpie molaire.

Détente de Joule Kelvin

Présentation


On suppose l’écoulement stationnaire
Bilan énergétique
1er principe appliqué à l’écoulement :



Donc

On dit que la détente de Joule Kelvin est isoH ou isenthalpique
Applications aux gaz
Pour un gaz parfait : H dépend uniquement de T (2nde loi de Joule)

Donc (idem que pour U), la détente est donc monotherme

Pour un gaz réel : H dépend de T et P. On a mais

En général, .

similaire:

Bilans énergétiques iconL'aura et les centres énergétiques

Bilans énergétiques iconActivites humaines et besoins energetiques

Bilans énergétiques iconDifférents types de dépense énergétiques

Bilans énergétiques iconFederation europeenne de qi gong et arts energetiques

Bilans énergétiques iconI) Calcul des besoins énergétiques journaliers (bej)

Bilans énergétiques iconLeçon 4 : Adapter les apports énergétiques aux besoins de l’organisme

Bilans énergétiques iconLeçon 4 : Adapter les apports énergétiques aux besoins de l’organisme

Bilans énergétiques iconRecommandations pour le calcul des besoins énergétiques chez l’adulte ( ≥ 19 ans)

Bilans énergétiques iconL’activité physique s’accompagne d’une adaptation de diverses activités...

Bilans énergétiques iconBoissons énergétiques : des solutions répondant à des besoins spécifiques








Tous droits réservés. Copyright © 2016
contacts
p.21-bal.com