Lien entre mouvement et forces – Les lois de Newton








télécharger 41.69 Kb.
titreLien entre mouvement et forces – Les lois de Newton
date de publication28.03.2017
taille41.69 Kb.
typeDocumentos
p.21-bal.com > loi > Documentos


Partie 2

Lien entre mouvement et forces – Les lois de Newton

A - Mouvement d’un objet dans un champ de pesanteur

Activité 1 – Lien entre forces et accélération

Activité 1 - Lancer vertical d’un médecine-ball

Objectif : renforcer la relation entre Force et accélération et affaiblir la relation intuitive entre force et vitesse.

Compétences travaillées - Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération ***. Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes ***.

1. Interrogation à l’oral - Lancer le MB vers le haut. Repérer les différentes phases du mouvement.

En général, des discussions émergent 4 phases (lancer, montée, descente, réception) Les élèves en nomment parfois une cinquième : le sommet où le ballon « s’arrêterait »
2. Par souci de simplification, on modélisera le système médecine ball (MB) par un point : son centre, et on négligera l’action de l’air sur lui.

a. Faire le bilan des forces appliquées au système pendant les quatre phases du mouvement, on pourra s’aider d’un diagramme d’interaction.

Lancer : 2 interactions entre la main et le ballon et la terre et le ballon.

D’où deux forces sur le ballon : celle exercée par la main sur le ballon et celle exercée par la terre sur le ballon= le poids du ballon

Montée : Le poids

Descente : Le poids

Réception : 2 interactions : main - ballon et terre – ballon et donc deux forces : et .
b. Compléter le tableau ci dessous.



3. Préciser le vecteur (direction et sens) « somme des forces » pour chacune des phases du mouvement.

Pendant la phase de lancer : elle est dirigée vers le haut

Pendant la montée comme la descente : elle est dirigée vers le bas.

Pendant la phase de réception : elle est dirigée vers le bas d’abord.
4. Parmi les liens proposés ci-dessous entre la somme des forces et le mouvement, indiquer celui (ou ceux) qui vous semble(nt) en accord avec le tableau.

La somme des forces est liée :

q au sens de la vitesse q à la valeur de la vitesse  au changement de sens de la vitesse

 à la variation de la vitesse  à l’accélération
Activité 2 – Utilisation de la 2ème loi de Newton

Activité 2 -Tir au pigeon

Objectifs – 1) Renforcer le lien entre force s’exerçant sur le système et vecteur accélération du centre d’inertie du système qu’il faudra ici tracer ; 2) distendre encore le lien intuitif entre vitesse et force.

Compétences travaillées - Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération ***. Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes ***.
Situation : On suit des yeux l’évolution dans l’air d’un « pigeon » d’argile.

On modélisera le système étudié à savoir le « pigeon » par un point : son centre.

La trajectoire de ce centre est donnée par le graphe ci dessous.



1. Séparer les élèves en différents groupes :

Groupe 1 : Représenter, sur le graphe, le vecteur vitesse en A5 et en A15.

Groupe 2 : Représenter, sur le graphe, le vecteur vitesse en A0 et en A10.

Groupe 3 : Représenter, sur le graphe, le vecteur vitesse en A13 et en A17.

(échelle de représentation 1 cm pour 6 m.s-1).

Mutualiser les résultats.

Que dire des directions, sens et valeurs de ces vecteurs vitesse ?

La direction de chaque vecteur est tangente à la trajectoire, le sens est toujours celui du mouvement. La valeur de la vitesse diminue dans la phase de montée et elle augmente dans la phase de descente.

2. Représenter :

Groupe 1 : en A10, le vecteur accélération moyenne entre les points A5 et A15

Groupe 2 : en A5, le vecteur accélération moyenne entre les points A0 et A10

Groupe 3 : en A15, le vecteur accélération moyenne entre les points A13 et A17

(échelle de représentation 1 cm pour m.s-2)

Mutualiser les résultats.

Comparer les directions, sens et valeurs de ces vecteurs accélération moyenne.

Tous les vecteurs accélération moyenne ont même direction : verticale, même sens : vers le bas et même valeur.

3. En appliquant la 2° loi de Newton au système étudié, déterminer les caractéristiques du vecteur accélération instantanée du centre d’inertie du pigeon d’argile.

Représenter le vecteur accélération instantanée en A3 A7 et A11

2ème loi de Newton : dans un référentiel galiléen, la résultante des forces extérieures appliquées au système est égale à la dérivée de la quantité de mouvement : .

Référentiel : terrestre

Système : pigeon d’argile

Bilan des forces extérieures appliquées au système : le poids , l’action de l’air est négligée.

La 2ème loi de Newton s’écrit alors :
4. Y a-t-il accord entre les représentations de la question 2 et la conclusion de la question 3 ?

Oui, on retrouve les mêmes caractéristiques pour les vecteurs accélération moyenne et accélération instantanée.
*Attention à ne pas changer le format du schéma présenté lors du passage à la photocopie pour retrouver une valeur correcte de l’accélération.
Activité 3 – Établir les équations horaires du mouvement

Activité 3 - La bille lâchée

Objectif - Sensibiliser les élèves à l’intégration mathématiquement la plus simple possible et obtenir les premières équations horaires du mouvement

Compétences travaillées - Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes ***.
1) On lâche au même instant un marteau et une plume sans vitesse et depuis la même altitude. Lequel tombe le premier au sol :

  • si l’expérience est réalisée sur Terre ?

  • si l’expérience est réalisée sur la Lune ?

Répondre intuitivement.

La réponse intuitive est le plus souvent que le marteau arrive au sol en premier.

2) Proposer et réaliser une expérience permettant de valider ou non la prévision sur Terre. Noter son résultat et conclure.

3) Cette expérience a été réalisée lors de la mission lunaire Apollo 15 par l’astronaute David Scott. Visionner le film, noter le résultat et valider ou non la prévision faite à la question (1) sur la Lune.

Je n’ai pas la référence de la vidéo citée.

Les deux objets tombent de la même façon.
Pour étudier quantitativement la question (1) on utilise le modèle de la chute libre verticale : le système représenté par un point M est lâché à partir d’une position O sans vitesse initiale. On suppose négligeables les forces de frottement exercées sur lui.

Le mouvement de M est étudié dans un repère d’axe (Oz) vertical, d’origine O et orienté vers le bas.

Le but est d’établir l’expression de distance z parcourue par le système en fonction du temps t.

4) Pourquoi dit-on que le système étudié est en chute libre ?

Référentiel : terrestre, bilan des forces extérieures appliquées au système : négligeant tout frottement, le système n’est soumis qu’à son poids. On parle alors de chute libre.
5) En utilisant la 2ème loi de Newton, donner les caractéristiques du vecteur accélération instantanée du système.

La 2ème loi de Newton s’écrit alors :

– Le vecteur accélération est vertical, vers le bas et de valeur a = g.

– ou dans le repère choisi

6) En utilisant la relation entre accélération et vitesse, trouver l’expression v(t).



par intégration on obtient :

, C étant une constante d’intégration déterminée par les conditions initiales.

La bille est lâchée sans vitesse initiale d’où C=0.

Finalement :

7) En utilisant la relation entre vitesse et position du centre d’inertie de la bille, trouver l’expression de z(t).



8) Retour sur la question (1) :

Montrer que les équations des questions (6) et (7) permettent d’interpréter les observations réalisées sur la Lune avec la plume et le marteau.

Les équations des questions (6) et (7) sont indépendantes de la masse, quel que soit l’objet laché sur la Lune, il aura la même vitesse et la même position. La plume et le marteau arrivent simultanément au sol.

9.a) À quelle étape du raisonnement précédent faut-il introduire une modification si l’on veut modéliser le mouvement de la plume sur la Terre ? Quelle modification est nécessaire ?

il faut modifier le bilan des forces, les frottements de l’air ne sont pas négligeables.

9.b) Les équations établies en (6) et (7) modélisent aussi, avec une bonne approximation, le mouvement du marteau sur Terre. Proposer une justification.

Pour le marteau, les frottements de l’air restent négligeables.

Activité 4 - Comment déterminer la hauteur d’un tir vertical ?

Activité 4 - Petit Pierre et le volant de badminton
Objectif : Établir et utiliser les équations horaires du mouvement selon un axe.
Situation : Un volant de badminton est coincé dans un arbre. Petit Pierre a sa technique : il se met en dessous, et il lance son ballon vers le haut. Va-t-il le décrocher ?

(Se rapprocher de l’activité 1 pour l’analyse physique de la situation.)
On modélise ainsi la situation : le ballon est représenté par un point. Tout frottement est négligé devant le poids.

Référentiel d’étude : référentiel lié au sol.

Repère choisi : l’axe Oz orienté vers le haut. Le point O est sur le sol et on lance le ballon à partir de la hauteur z0 de la main, à la vitesse initiale v0.
1. Faire le bilan des forces s’appliquant sur le ballon une fois lancé. Faire le schéma correspondant.

Le ballon n’est soumis qu’à son poids lors de la montée et la descente

2. En appliquant la 2° loi de Newton à ce système, déterminer le vecteur accélération du centre du ballon. Le représenter sur le schéma de la situation.

 : l’accélération est un vecteur vertical vers le bas et de valeur constante.

3. a. Quelle est la coordonnée az du vecteur accélération dans le repère choisi ?

et az = - g

b. Représenter le graphe de az en fonction du temps : az(t)

C’est une droite horizontale : az est constante au cours du temps



4. Prévoir l’allure du graphe de la coordonnée vz de la vitesse en fonction du temps. On pourra s’aider de l’activité 1 pour cette question.

Souvent les élèves donnent une prévision en V : ils voient bien que la valeur de v diminue puis augmente mais n’aiment pas utiliser une coordonnée négative parce qu’ils associent coordonnée et valeur de la vitesse.

5. a. A l’aide du modèle, donner la relation entre az(t) et vz(t).

d’où vz est la primitive de az par rapport au temps.

b. En déduire l’expression mathématique de la coordonnée vz (t).

. La détermination de C se fait avec les conditions initiales : à t= 0,

c. Tracer le graphe de vz en fonction de t.



d. Comparer avec votre prévision ; corriger si besoin.

C’est l’occasion d’insister sur la différence entre coordonnée et valeur

6. Prévoir l’allure du graphe de z (t) où z est l’altitude du ballon à l’instant t.

Il est rare que les élèves prévoient la parabole. Ils confondent souvent avec la trajectoire et donnent alors une droite verticale

7. a. A l’aide du modèle, rappeler la relation entre vz(t) et z(t).

et z(t) est la primitive de vz (t)

b. Quelle est l’expression mathématique de z en fonction du temps ?

avec C’ Constante d’intégration dont la valeur est déterminée par les conditions initiales. Ici, z= z0 à t= 0 et z = -1/2.g.t2 + vz0t + z0

8. Regrouper les équations horaires du mouvement : az(t) vz(t) et z(t).



9. Le volant est dans à un arbre à z = 5,0 m de hauteur, Petit Pierre lance le ballon vers le haut avec une vitesse initiale v0 = 5,0 m.s– 1. Dans le repère choisi, sa main est à z0 = 1,0 m. Va-t-il toucher le volant ?

Le ballon a une vitesse nulle quand t = 0,5 s (calcul fait en prenant g =10 m.s-2)

Ce qui en remplaçant dans l’équation horaire de position : z = 2,25m .Or le volant est à 5 m : Le petit garçon ne touche pas le volant avec le ballon.
Activité 2 -– Mouvement dans un champ de pesanteur uniforme. Détermination des équations horaires.

Activité expérimentale 4 - Lancé parabolique d’une balle
Objectifs :

- Obtention des graphes des équations horaires du mouvement à l’aide d’un logiciel de pointage

- Utilisation des courbes : lecture graphique
Observer la vidéo du lancer de la balle.

1. À partir de l’analyse d’une séquence vidéo, et à l’aide d’un logiciel de pointage et de traitement des données, générer la courbe de vy(t).

Remarque pour le professeur : A cette époque de l’année, les élèves n’ayant souvent pas encore créé de grandeurs à partir des mesures relevées, il sera peut être utile de les guider pour cette question et de les laisser libres par la suite.

2. Dire si les propositions présentées dans la liste ci-dessous sont justes ou non. On pourra générer les courbes adéquates. Pour votre argumentation, travailler avec les courbes obtenues ou avec le tableau de valeurs.

Remarque pour le professeur : il peut être intéressant en fin de ce chapitre difficile pour les élèves, de les faire travailler d’abord en prévision puis en validation.



a. La trajectoire est une parabole.

Oui

b. La valeur de l’accélération diminue puis augmente.

Non : L’occasion de rappeler la différence entre vitesse et accélération

c. Le vecteur accélération est égal au vecteur champ de pesanteur terrestre.

Oui : a = g Or les élèves éprouvent des difficultés à accepter ce fait alors que la trajectoire est une parabole.

d. La coordonnée horizontale vx de la vitesse v est constante.

Oui

e. La vitesse de la balle est constante.

Non : elle diminue puis augmente.

f. vy diminue puis augmente.

Non : vy diminuent toujours. Très difficile pour nos élèves !

La confrontation des réponses à ces trois dernières questions est importante pour les élèves.

g. L’équation horaire de la coordonnée verticale z est une fonction parabolique.

Oui

Remarques pour le professeur :

* On choisira le même repère que dans l’étude théorique de l’activité 2.

* on mettra un graphe par fenêtre et on insérera, sur chaque graphe, l’équation de la courbe.
3. Par lecture graphique, déterminer les conditions initiales du tir :

a. Position initiale : x(0) et y(0)

b. Coordonnée de la Vitesse initiale : vx(0) et vy(0)

c. En déduire v(0) et l’angle de tir

d. Retrouver la valeur de l’angle du tir en traçant sur le graphe de la trajectoire à partir de vx(0) et vy(0).

Les réponses dépendent de la vidéo utilisée.

Exemple de réponses :





SESAMES Lyon






similaire:

Lien entre mouvement et forces – Les lois de Newton iconChapitre 8 : Applications des lois de Newton et des lois de Kepler

Lien entre mouvement et forces – Les lois de Newton iconLe nombre de Reynolds représente le rapport entre les forces d'inertie...

Lien entre mouvement et forces – Les lois de Newton iconLien entre roman et histoire

Lien entre mouvement et forces – Les lois de Newton iconLe jeu «Angry Birds»suit-il les lois de la physique newtonienne ?
«Angry Birds» a été réalisée pour permettre tout d’abord d’étudier les conditions de lancement de l’oiseau avec la catapulte. Dans...

Lien entre mouvement et forces – Les lois de Newton iconQuelles sont les forces qui régissent les lois physique de notre univers?
«solides» de la planète Terre (croûte, manteau, noyau) avec une densité croissante vers le centre, au centre de la planète le principal...

Lien entre mouvement et forces – Les lois de Newton icon«Un corps vivant est un mécanisme, dont IL faut chercher les lois...

Lien entre mouvement et forces – Les lois de Newton iconLorsque le f-14 est entré en service dans l'us navy, cela a entraîné...

Lien entre mouvement et forces – Les lois de Newton iconLittérature Française du xviiième Montesquieu
«rapport que les lois doivent avoir avec la constitution de chaque gouvernement, les mœurs, le climat, la religion, le commerce,...

Lien entre mouvement et forces – Les lois de Newton iconRelation de confiance
«L’Ordinariat» et des obligations des individus par rapport au droit civil, ainsi que du Protocole d’entente entre l’Ordinariat et...

Lien entre mouvement et forces – Les lois de Newton iconCommission de la defense nationale et des forces armees
«vivier de compétences», en faisant bénéficier les forces armées et formations rattachées de l’expertise et de l’expérience de réservistes...








Tous droits réservés. Copyright © 2016
contacts
p.21-bal.com