Vitesse moyenne et vitesse instantanée d’un point mobile m








télécharger 76.63 Kb.
titreVitesse moyenne et vitesse instantanée d’un point mobile m
date de publication17.05.2017
taille76.63 Kb.
typeDocumentos
p.21-bal.com > documents > Documentos
T.P.n°16: L'énergie en mécanique


  1. Vitesse moyenne et vitesse instantanée d’un point mobile M :




  • La trajectoire d’un point mobile M est l’ensemble des positions successives occupées par ce point au cours du temps (plus simplement, on peut dire : c’est le chemin suivi par M au cours de son déplacement).




  • La trajectoire d'un point mobile dépend du référentiel choisi pour étudier le mouvement de ce point




  • Un référentiel est un objet choisi arbitrairement et considéré comme immobile, par rapport auquel on étudie le mouvement d’un autre objet (appelé "système") auquel on s’intéresse.

On lui associe une horloge pour mesurer le temps.
Tout objet immobile par rapport à la terre (paillasse, salle de classe) est appelé « référentiel terrestre ».

Tous les mouvements étudiés cette année seront observés à partir d'un référentiel terrestre.


  • Le mouvement de M est rectiligne si la trajectoire de M est une droite, ou un segment

Le mouvement de M est circulaire si la trajectoire de M est un cercle, ou un arc de cercle

Le mouvement de M est curviligne si la trajectoire de M n’est ni une droite ni un cercle


  • L
    réguliers notés  et égaux à 0,10seconde.

    es documents ci-dessous représentent les positions occupées par un point mobile M à intervalles de temps


= 0,10s

Précise pour chaque mouvement s’il est rectiligne, circulaire ou curviligne.
D
M1
ocument 1 document 2 document 3 document 4


M4


M2

M3

M5

M2

M6


M3


M4


M1

M5

M7


M6



  • La vitesse moyenne du point mobile M entre deux instants t1 et t5 est égale au quotient de la distance parcourue par M entre ces deux instants, c’est à dire M1M5 , par la durée de ce déplacement.

S
Vmoy. (entre t1 et t5) = M1M5 / t5 t1 = M1M5 / 4
i la distance a pour unité le mètre (m) et si la durée s’exprime en seconde (s), la vitesse s’exprime en mètre par seconde ou m.s1.



  • Calcule la vitesse moyenne du mobile M entre les instants t1 et t5 pour les documents 1 et 4 ci-dessus … quelles réflexions te suggèrent ce résultat ?



  • O
    V2 = M1M3 / t3 t1 = M1M3 / 2
    n définit la vitesse instantanée V2 d’un point mobile M à l’instant t2 comme la vitesse moyenne de M entre deux instants t1 et t3 qui encadrent t2 .

Plus l’intervalle de temps t3 t1 sera petit, meilleure sera la connaissance de


  • Calcule V2 et V4 pour les mobiles des documents 1 et 4. Conclue



  1. Nature du mouvement d’un solide :




  • En physique, on définit un solide comme un objet indéformable : la distance entre deux points quelconques de ce solide reste constante au cours de ses déplacements.


Un solide en mouvement est constitué par un ensemble de points mobiles, dont les trajectoires et les vitesses peuvent être très différentes les unes des autres, mais pas indépendantes les unes des autres… puisque le solide est indéformable.


  • Un solide est animé d’un mouvement de translation s’il se déplace en conservant une orientation fixe dans l’espace : un segment AB reliant deux points quelconques du solide reste, au cours du déplacement, parallèle à sa position initiale


Exemple : les positions occupées par deux points A et B d’un solide animé d’un mouvement de translation sont représentées ci-dessous à intervalles de temps réguliers.
* Compare les trajectoires des points A et B

Que constates-tu ?


= 0,10s

* Représente les segments AB à différents instants… que constates-tu ?

* Compare les vitesses des points A et B à chaque instant. Que constates-tu ?


* Cite des exemples d’objets animés d’un mouvement de translation dans ton entourage.





  • U
    = 0,10s
    n solide est animé d’un mouvement de rotation autour d’un

axe fixe s’il tourne autour de cet axe. 
Les positions occupées par deux points A et B d’un solide

animé d’un mouvement de rotation autour d’un axe fixe

perpendiculaire au plan du schéma et passant par O, sont

représentées ci-contre à intervalles de temps réguliers.
* Compare les trajectoires des points A et B…
* Représente les segments AB à différents instants…que constates-tu ?


* Calcule les vitesses des points A et B à l'instant t4… Que constates-tu ?

* Cite des exemples d’objets animés d’un mouvement de rotation dans ton entourage.

  • Les positions occupées par deux points A et B d’un solide (S),

à intervalles de temps réguliers, sont représentées ci-contre.
Le solide (S) est-il animé d’un mouvement de translation

ou de rotation ? justifie ta réponse…


A quel objet réel peut correspondre (S).


  1. Energie cinétique :


L'énergie cinétique d'un objet est l'énergie qu'il possède du fait de son mouvement.
U
avec m en kg , V en m.s–1 et Ec en J (joule)
n solide de masse m, animé d'un mouvement de translation à la vitesse V, possède une énergie cinétique Ec dont l'expression est :

L'énergie cinétique dépend-t-elle du référentiel choisi pour étudier le mouvement du solide ?

Pourquoi précise-t-on que le solide doit être animé d'un mouvement de translation ?

Application numérique : compare les énergies cinétiques d'une voiture de masse M = 900kg qui circule en ville à la vitesse V1= 50km.h–1 puis sur autoroute à la vitesse V2= 130km.h–1 .

Sous quelle autre forme d'énergie se transforme l'énergie cinétique du véhicule en cas de freinage ? conclue.


  1. Energie potentielle de pesanteur :


L'énergie potentielle de pesanteur Epp correspond à une énergie "mise en réserve" par un objet de masse m du fait de sa position en hauteur dans le champ de pesanteur terrestre g.

Elle peut se transformer en énergie cinétique si l'objet se met en mouvement sous l'effet de son poids.
Exemple:

  • L'eau située derrière le barrage de l'Ospédale possède-t-elle de l'énergie cinétique ? justifie.




  • Que va faire cette eau si on ouvre les vannes du barrage ? Quelle en sera la cause ?


  • De quels facteurs dépend d'après toi la valeur de l'énergie "en réserve" que possède de l'eau dans un barrage?





Un objet de masse m, dont le centre de gravité G est situé à la hauteur h par rapport

à une origine O choisie arbitrairement ( qu'il faut donc préciser ! ) possède au voisinage

de la terre qui crée un champ de pesanteur g une énergie potentielle de pesanteur Epp

qui a pour expression :

La valeur de Epp dépend de l'origine choisie pour les hauteurs.


  1. Energie mécanique :


L'énergie mécanique Em d'un solide en mouvement au voisinage de la terre est définie comme la somme de son énergie cinétique et de son énergie potentielle de pesanteur :



  1. Application à la chute libre d'une bille :


Deux billes de masses respectives m1= 50g et m2= 200g sont lâchées simultanément

à partir de deux points voisins situés sur une même horizontale, à un instant t0 = 0.
Le document ci-contre à l'échelle 1/20ème est une chronophotographie de leur mouvement

de chute réalisée à 10 images par seconde. Les forces de frottement sont négligeables.


  • Décris et compare ces mouvements de chute. Que peux-tu en conclure ?



  • Calcule la valeur de l'intervalle de temps τ qui sépare deux positions successives de

chaque bille sur le document.


  • Représente l'axe des hauteurs et précise l'origine choisie sur cet axe.




  • Complète avec l'aide de tes camarades les tableaux ci-dessous :




t en s

0

0,10

0,20

0,30

0,40

0,50

Ec en J



















Epp en J



















Em en J



















t en s

0

0,10

0,20

0,30

0,40

0,50

Ec en J



















Epp en J



















Em en J




















m1= 50g

m2= 200g



  • Que constates-tu ?


  • Propose une méthode pour calculer la vitesse de chaque bille

à l'instant t6 = 0,60s.

  • Représente ci-contre, pour la petite bille, les courbes montrant

les variations de ces trois formes d'énergie au cours du temps.


  • L'énergie mécanique de la bille restera-t-elle constante lorsque la bille va pénétrer dans l'eau ? pourquoi ?




  1. Comment stocker de l'énergie électrique ?




Les centrales nucléaires produisent de l'électricité de façon

continue, même lorsque la consommation des usagers est

réduite (la nuit, l'été, ...).
Il est possible de stocker ce surplus de production en pompant

l'eau située dans le lac de Limmernsee, pour la faire remonter

dans le lac de Muttsee.

Inversement, pendant les périodes de forte consommation, l'eau

redescend vers le lac inférieur en faisant tourner une turbine

couplée à un alternateur, fournissant ainsi du courant électrique.


  • Une centrale nucléaire de 1,0GW produit en une journée une énergie E = 8,6.1013J.

Si cette énergie était intégralement utilisée pour pomper de l'eau, quel volume d'eau pourrait être ainsi remonté en une journée ?

  • Calcule l'énergie cinétique puis la vitesse de 1,0L d'eau provenant du barrage supérieur et qui arrive au niveau de la centrale souterraine. On négligera l'énergie perdue dans les frottement entre l'eau et les canalisations forcées.


  • Sous quelle forme se trouve ainsi stocké le surplus d'énergie produit par les centrales nucléaires ?

Existe-t-il d'autres méthodes pour stocker de l'énergie électrique ?

  1. Une application du principe de conservation de l'énergie: la découverte du "neutrino"


32

15


16



  • Ecris l'équation correspondant à la désintégration radioactive βdu noyau de phosphore P en soufre S :



  • La masse du noyau père est M1= 31,9657u et celle du noyau fils M2= 31,9633u avec 1 u = 1,66.10–27kg

La masse d'un électron est m= 5,42.10–4u et la célérité de la lumière dans le vide C0=3,0.108m.s–1.

Calcule l'énergie libérée par cette désintégration radioactive.

  • Sous quelle forme doit se retrouver cette énergie ?



Or en 1914 le Britannique James Chadwick mesure l'énergie cinétique des électrons émis et il constate qu'ils ont des énergies variables, toujours inférieures à celle calculée !

En 1930, Wolfgang Pauli postule l'existence d'une particule de masse nulle qui serait émise en même temps que l'électron et qui emporterait une partie de l'énergie libérée par la réaction nucléaire.

En 1933, l'Italien Enrico Fermi donne le nom de "neutrino" (petit neutron) à cette particule hypothétique qui est finalement mise en évidence expérimentalement en 1956.




  • Quel est le principe de physique qui a permis de prévoir

l'existence d'une particule inconnue: le neutrino ?




similaire:

Vitesse moyenne et vitesse instantanée d’un point mobile m iconComposition atmosphériques, Vitesse de d’évasion et d’agitation
«s'évade» dans l'espace. C'est la vitesse qu'il faut par exemple communiquer aux fusées. Cette vitesse d'évasion ou de libération...

Vitesse moyenne et vitesse instantanée d’un point mobile m icon«La qualité de vitesse n’existe pas mais constitue une liaison des...

Vitesse moyenne et vitesse instantanée d’un point mobile m icon5) Le mobile (M) parcourt une distance 500m à une vitesse constante...

Vitesse moyenne et vitesse instantanée d’un point mobile m iconC6 Terminale s – La mesure du temps et la relativité
«Au lieu de considérer la vitesse de la lumière relative dans un espace et un temps absolus, Einstein va reconstruire la physique...

Vitesse moyenne et vitesse instantanée d’un point mobile m iconLa vitesse relative

Vitesse moyenne et vitesse instantanée d’un point mobile m iconTd c1 : vitesse d’une reaction chimique

Vitesse moyenne et vitesse instantanée d’un point mobile m iconVitesse des réactions – le paramètre temps en chimie

Vitesse moyenne et vitesse instantanée d’un point mobile m iconRésumé du cours de mécanique Term s mouvement d’un point mobile m

Vitesse moyenne et vitesse instantanée d’un point mobile m icon5. La variation de vitesse est obtenue par un variateur mécanique 11

Vitesse moyenne et vitesse instantanée d’un point mobile m iconSynthèse de documents: Vitesse d'éloignement des galaxies et spectroscopie








Tous droits réservés. Copyright © 2016
contacts
p.21-bal.com