Du programme de 1








télécharger 93.75 Kb.
titreDu programme de 1
date de publication15.11.2016
taille93.75 Kb.
typeProgramme
p.21-bal.com > loi > Programme
FICHE 1

Fiche à destination des enseignants

1S 6

La couleur des étoiles (La loi de Wien)

Type d'activité

Activité documentaire et utilisation de TIC




Notions et contenus du programme de 1ère S
Largeur spectrale d’une source.

Couleur des corps chauffés. Loi de Wien.

Compétences attendues du programme de 1ère S

Connaître Distinguer une source polychromatique d’une source monochromatique caractérisée par une longueur d’onde dans le vide.

Connaître les limites en longueur d’onde dans le vide du domaine visible et situer les rayonnements infrarouges et ultraviolets.




Compétences liées aux activités effectuées dans ce sujet

[Pilier 1]

Extraire des informations pertinentes d’un document.

Agir selon les consignes données en début de séance.

[Pilier 2]

Décrire les phénomènes avec le vocabulaire approprié.

[Pilier 3]

Extraire d’un document papier les informations relatives à un thème de travail.

Organisation et gestion des données

Traduire des observations.

Décrire le comportement d’une grandeur.

Utiliser une formule.

Présenter et expliquer l’enchaînement des idées.

[Pilier 6]

Travailler en autonomie.

Mobiliser sa curiosité.

Commentaires sur l’activité proposée


Cette activité illustre la partie « OBSERVER » et la sous-partie Sources de lumière colorées du programme de 1ère S.

Conditions de mise en œuvre


Durée : 2 h 00 en salle informatisée .

  1. Remarques


Cette activité expérimentale constitue un prolongement du thème L’Univers abordé en classe de 2nde.

L’activité peut s’étaler sur plusieurs séances. Les différents documents (1, 2 et 3) sont donnés au fur et à mesure de la progression des élèves qui travaillent en petits groupes. Le travail sur tableur n’intervient que dans le document 3 mais on peut aussi donner l’ensemble des documents dans un dossier informatique comportant les photographies et les spectres. Un accès à Internet est nécessaire pour la dernière partie.


FICHE 2
Texte à distribuer aux élèves


La couleur des étoiles : la loi de Wien (document 1)
Les connaissances en sciences se construisent petit à petit. C’est souvent l’observation qui permet d’affiner, de préciser une théorie.
Contrôle des connaissances.
La température T d’un corps peut s’exprimer en Kelvin (K). Elle est reliée à la température  en degré Celsius (°C) par la relation : T =  + 273,15.


  • Cocher la ou les bonnes réponses.

Quel dispositif peut-on utiliser afin d’obtenir un spectre?


Un réseau 

Un CD 

Un laser 

Un drap 

Un prisme 

Un télescope 

Des gouttes d’eau 

De la fumée 


Le spectre de la lumière blanche…

… est continu et s’étale du rouge au violet 

… contient des raies noires sur un fond coloré 

… contient des raies colorées sur un fond noir 

… contient toutes les couleurs de l’arc-en-ciel 

… est celui d’une source polychromatique 

… est celui d’une source monochromatique 
Plus la température de la source lumineuse est grande, plus le spectre s’enrichit …


Rouge jaune vert bleu violet



http://guilhaumont.fr/opale/2nde_p_lumiere/res/corpschauds.jpg


T

augmente




400 nm

800 nm




λ diminue



… vers les radiations de petites longueurs d’onde 

… vers les radiations de grandes longueurs d’onde 

  • Interpréter cette situation.




Situation




Interprétation possible

Une lampe de poche munie d’une pile neuve émet une lumière blanche et intense (le filament au tungstène de l’ampoule est chauffé à 2700 K).

Si la pile est usée (le filament n’est chauffé qu’à 1500 K), la lumière émise est peu intense, elle devient orangée puis rouge.  








La couleur des étoiles : la loi de Wien (document 2)

Un problème de couleurs

Bételgeuse et Bellatrix sont deux étoiles appartenant à la constellation d’Orion qui est très facilement visible dans le ciel des nuits d’hiver (voir projection).orion _tb.jpg


Bételgeuse

Bellatrix



La température de surface de Bételgeuse est de 3500 K.

La température de surface de Bellatrix est de 28000 K.

D’après ces données et ce qui a été revu dans le document 1, ces deux étoiles devraient apparaître blanches. Ceci n’est pas cohérent avec l’observation puisque Bételgeuse est une étoile rouge et Bellatrix une étoile bleue.

Par petits groupes de recherche, vous devez émettre des hypothèses permettant d’expliquer ces couleurs qui semblent en contradiction avec vos connaissances.

Hypothèses

Conséquences sur la couleur de l’étoile




















La couleur des étoiles : la loi de Wien (document 3)
La loi de Wien
Pour valider l’une des hypothèses du document précédent, les spectres de la lumière émise par ces étoiles ont été faits.

btelge~1.jpg

bellatrix.jpg

Que peut-on remarquer sur ces spectres ?
Enfin, nouvelle donnée importante, voici le graphe représentant l’intensité lumineuse émise en fonction de la longueur d’onde pour des corps de températures différentes.


Intensité lumineuse
wien.png

Quelle est la longueur d’onde correspondant au maximum d’intensité lumineuse à 3500K ?
Même question pour un corps chauffé à 5000 K.
De manière générale, que peut-on dire de la longueur d’onde correspondant au maximum d’intensité lumineuse lorsque la température augmente ?
Un corps chaud émet-il toutes les radiations avec la même intensité ?
Tracer sur le graphe le domaine correspondant aux radiations visibles.

Ces nouvelles données doivent vous permettre de trouver une explication pour la couleur des étoiles.
Dans le tableau ci-dessous, il est donné, pour plusieurs températures en Kelvin, la valeur de la longueur d’onde correspondant au maximum d’émission lumineuse du corps chauffé.
Le modèle


T (K)

2000

2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

12500

13500

14500

15500

16500

17500

18500

19500

λmax (nm)

1450

1156

826

642

526

445

385

345

305

275

251

231

214

200

186

175

165

156

148

On cherche une relation entre la température et la longueur d’onde de la radiation la plus intense :

A l’aide d’un tableur, recopier ces données et tracer la courbe λmax = f() en respectant le système international (SI) pour les unités.

Que remarquez-vous?

Après avoir modélisé la courbe, en déduire une relation entre la longueur d’onde λmax et l’inverse de la température.

La loi de Wien donne λmax T = constante avec λmax en mètre et T en Kelvin. Donner la valeur de la constante.

Conclusion
Utilisons la loi de Wien :

La température de surface du Soleil est de 5500 K environ. A l’aide des autres températures données dans le document 2, calculer la longueur d’onde du maximum d’intensité lumineuse pour Bételgeuse, Bellatrix et pour le Soleil. Conclure sur la couleur de ces étoiles. Est-ce conforme aux observations ?

Données :

Couleur

rouge

orangé

Jaune

Vert

Bleu

Indigo

Violet

λ (nm)

800 à 650

650 à 590

590 à 550

550 à 490

490 à 465

465 à 440

440 à 400


La couleur prise par une étoile ne correspond pas tout à fait à celle de la radiation émise avec le plus d’intensité. Les autres radiations sont aussi présentes même si elles sont moins intenses. La couleur réelle de l’étoile dépend de tous ces paramètres. De plus notre œil n’a pas la même sensibilité pour les radiations lumineuses.


Vérifier vos résultats, à l’aide de l’animation sur le site de l’observatoire de Paris:

http://media4.obspm.fr/public/FSU/temperature/rayonnement/corps-noir/spectre-corps-noir/SIMULER.html
FICHE 3 Correction. Fiche à destination des enseignants

La couleur des étoiles : la loi de Wien (document 1)
Les connaissances en sciences se construisent petit à petit. C’est souvent l’observation qui permet d’affiner, de préciser une théorie.

Contrôle des connaissances.
La température T d’un corps peut s’exprimer en Kelvin (K). Elle est reliée à la température  en degré Celsius (°C) par la relation : T =  + 273,15.


  • Cocher la ou les bonnes réponses.

Quel dispositif peut-on utiliser afin d’obtenir un spectre?


Un réseau 

Un CD 

Un laser 

Un drap 

Un prisme 

Un télescope 

Des gouttes d’eau 

De la fumée 


Le spectre de la lumière blanche…

… est continu et s’étale du rouge au violet 

… contient des raies noires sur un fond coloré 

… contient des raies colorées sur un fond noir 

… contient toutes les couleurs de l’arc-en-ciel 

… est celui d’une source polychromatique 

… est celui d’une source monochromatique 
Plus la température de la source lumineuse est grande, plus le spectre s’enrichit …


Rouge jaune vert bleu violet



http://guilhaumont.fr/opale/2nde_p_lumiere/res/corpschauds.jpg


T

augmente




400 nm

800 nm




λ diminue



… vers les radiations de petites longueurs d’onde 

… vers les radiations de grandes longueurs d’onde 

  • Interpréter cette situation.




Situation




Interprétation possible

Une lampe de poche munie d’une pile neuve émet une lumière blanche et intense (le filament au tungstène de l’ampoule est chauffé à 2700 K).

Si la pile est usée (le filament n’est chauffé qu’à 1500 K), la lumière émise est peu intense, elle devient orangée puis rouge.  




Forte température : le spectre contient toutes les radiations du visible, la lumière blanche est obtenue à partir de l’ensemble des radiations du visible.

Température plus basse : le spectre s’appauvrit en radiations de petites longueurs d’onde, seules les radiations correspondant à l’orangé et au rouge persistent.


La couleur des étoiles : la loi de Wien (document 2)

Un problème de couleurs

Bételgeuse et Bellatrix sont deux étoiles appartenant à la constellation d’Orion qui est très facilement visible dans le ciel des nuits d’hiver (Voir projection).orion _tb.jpg


Bételgeuse

Bellatrix












La température de surface de Bételgeuse est de 3500 K.

La température de surface de Bellatrix est de 28000 K.

D’après ces données et ce qui a été revu dans le document 1, ces deux étoiles devraient apparaître blanches. Ceci n’est pas cohérent avec l’observation puisque Bételgeuse est une étoile rouge et Bellatrix une étoile bleue.

Par petits groupes de recherche, vous devez émettre des hypothèses permettant d’expliquer ces couleurs qui semblent en contradiction avec vos connaissances.

Hypothèses

Conséquences sur la couleur de l’étoile





















La couleur des étoiles : la loi de Wien (document 3)
La loi de Wien
Pour valider l’une des hypothèses du document précédent, les spectres de la lumière émise par ces étoiles ont été faits.

btelge~1.jpg

bellatrix.jpg

Que peut-on remarquer sur ces spectres ?

Pour Bételgeuse : violet peu représenté, bleu faible ; pour Bellatrix : toutes les radiations sont présentes.

On peut faire remarquer que les raies d’absorption sont bien présentes sur ces spectres (les bandes sur le spectre de Bételgeuse sont dues à l’oxyde de titane TiO).

Une des hypothèses du document précédent peut justement être que certaines couleurs sont absorbées et que cela pourrait changer la couleur de l’étoile : on peut alors faire remarquer que dans le cas de Bellatrix, les raies absorbées ne correspondent qu’à une toute petite partie du spectre et n’engendrent pas de changement notable sur la couleur de la lumière émise.
Enfin, nouvelle donnée importante, voici le graphe représentant l’intensité lumineuse émise en fonction de la longueur d’onde pour des corps de températures différentes.


Intensité lumineuse
wien.png

Quelle est la longueur d’onde correspondant au maximum d’intensité lumineuse à 3500K ?

Environ 800 nm

Même question pour un corps chauffé à 5000 K.

Environ 580 nm

De manière générale, que peut-on dire de la longueur d’onde correspondant au maximum d’intensité lumineuse lorsque la température augmente ?

λmax  lorsque T

Un corps chaud émet-il toutes les radiations avec la même intensité ?

Non, on remarque facilement que pour une même température certaines radiations sont beaucoup plus intenses que d’autres.

Tracer sur le graphe le domaine correspondant aux radiations visibles.

Radiations visibles comprises entre 400 et 800 nm

Ces nouvelles données doivent vous permettre de trouver une explication pour la couleur des étoiles.

Le modèle
Dans le tableau ci-dessous, il est donné, pour plusieurs températures en Kelvin, la valeur de la longueur d’onde correspondant au maximum d’émission lumineuse du corps chauffé.

T (K)

2000

2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

12500

13500

14500

15500

16500

17500

18500

19500

λmax (nm)

1450

1156

826

642

526

445

385

345

305

275

251

231

214

200

186

175

165

156

148

On cherche une relation entre la température et la longueur d’onde de la radiation la plus intense :

A l’aide d’un tableur, recopier ces données et tracer la courbe λmax = f() en respectant le système international (SI) pour les unités.

Que remarquez-vous?

Une droite est obtenue.

Après avoir modélisé la courbe, en déduire une relation entre la longueur d’onde λmax et l’inverse de température.

λmax = 2,89.10-3 1/T

La loi de Wien donne λmax T = constante avec λmax en mètre et T en Kelvin. Donner la valeur de la constante.

λmax T = 2,89.10-3 K.m
Conclusion
Utilisons la loi de Wien :

La température de surface du Soleil est de 5500 K environ. A l’aide des autres températures données dans le document 2, calculer la longueur d’onde du maximum d’intensité lumineuse pour Bételgeuse, Bellatrix et pour le Soleil. Conclure sur la couleur de ces étoiles. Est-ce conforme aux observations ?

Bételgeuse : λmax = 826 nm. Le maximum d’intensité est obtenu pour une radiation rouge. La courbe d’intensité descend très vite pour les autres radiations du visible : Bételgeuse est une étoile rouge !
Béllatrix : λmax = 1032 nm. Le maximum d’intensité est obtenu dans l’ultraviolet. La forme de la courbe permet de montrer que le violet et le bleu sont bien plus intenses que les autres couleurs.
Soleil : λmax = 525 nm. Ceci correspond à une radiation verte mais globalement toutes les radiations du visible sont bien représentées. Le Soleil nous apparait donc comme une étoile blanche et non verte !
On peut aussi en profiter pour revenir à l’ampoule et son filament de tungstène. Il est chauffé à 2700 K :

λmax = 1070 nm. Le maximum se situe dans l’infrarouge (Ce mode d’éclairement est peu efficace !) mais la courbe très « étalée et plate » pour les basses températures fait que toutes les radiations sont également représentées dans le visible : la lumière est blanche !

Données :

Couleur

rouge

orangé

Jaune

Vert

Bleu

Indigo

Violet

λ (nm)

800 à 650

650 à 590

590 à 550

550 à 490

490 à 465

465 à 440

440 à 400


La couleur prise par une étoile ne correspond pas tout à fait à celle de la radiation émise avec le plus d’intensité. Les autres radiations sont aussi présentes même si elles sont moins intenses. La couleur réelle de l’étoile dépend de tous ces paramètres. De plus notre œil n’a pas la même sensibilité pour les radiations lumineuses.


Vérifier vos résultats, à l’aide de l’animation sur le site de l’observatoire de Paris:

http://media4.obspm.fr/public/FSU/temperature/rayonnement/corps-noir/spectre-corps-noir/SIMULER.html


similaire:

Du programme de 1 iconIntroduction (Maxime)
«combat» en créant avec son équipe le programme ‘’fome zero‘’ ce qui signifie ‘’faim zéRO‘’. Ce programme fut une réussite car IL...

Du programme de 1 iconTome II le mouvement national-socialiste Chapitre premier
«programme d’un parti», puis comment, de temps en temps, celui-ci est fignolé et léché. On doit surtout regarder à la loupe les mobiles...

Du programme de 1 iconLe programme des conférences de D3, de septembre à juin, porte sur...
«ancienneté» dans ce contexte pédagogique, explique que la grande majorité d’entre nous a l’expérience de l’enseignement et de l’évaluation...

Du programme de 1 iconProgramme 4 Formulaire de Reconnaissance et de Consentement programme...
«Code» en juin 2004. L’étude internationale du Code par tous les signataires a été suivie de la validation du nouveau Code mondial...

Du programme de 1 iconProgramme de d

Du programme de 1 iconProgramme général

Du programme de 1 iconProgramme de résidence

Du programme de 1 iconProgramme culturel

Du programme de 1 iconProgramme éducatif

Du programme de 1 iconProgramme de référence








Tous droits réservés. Copyright © 2016
contacts
p.21-bal.com